152 research outputs found

    Laser induced strong-field ionization gas jet tomography

    Full text link
    We introduce a novel in-situ strong field ionization tomography approach for characterizing the spatial density distribution of gas jets. We show that for typical intensities in high harmonic generation experiments, the strong field ionization mechanism used in our approach provides an improvement in the resolution close to factor of 2 (resolving about 8 times smaller voxel volume), when compared to linear/single-photon imaging modalities. We find, that while the depth of scan in linear tomography is limited by resolution loss due to the divergence of the driving laser beam, in the proposed approach the depth of focus is localized due to the inherent physical nature of strong-field interaction and discuss implications of these findings. We explore key aspects of the proposed method and compare it with commonly used single- and multi-photon imaging mechanisms. The proposed method will be particularly useful for strong field and attosecond science experiments.Comment: 8 pages, 3 figure

    Studying the universality of field induced tunnel ionization times via high-order harmonic spectroscopy

    Full text link
    High-harmonics generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechanism that leads to the harmonics generation. Recently, we have demonstrated the ability to resolve the first stage of the process -- field induced tunnel ionization -- by adding a weak perturbation to the strong fundamental field. Here we generalize this approach and show that the assumptions behind the strong field approximation are valid over a wide range of tunnel ionization conditions. Performing a systematic study -- modifying the fundamental wavelength, intensity and atomic system -- we observed a good agreement with quantum path analysis over a range of Keldysh parameters. The generality of this scheme opens new perspectives in high harmonics spectroscopy, holding the potential of probing large, complex molecular systems.Comment: 11 pages, 5 figure

    Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    Get PDF
    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25\u2013800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented

    Ultrafast THz probe of photo-induced polarons in lead-halide perovskites

    Full text link
    We study the nature of photo-excited charge carriers in CsPbBr3 nanocrystal thin films by ultrafast optical pump - THz probe spectroscopy. We observe a deviation from a pure Drude dispersion of the THz dielectric response that is ascribed to the polaronic nature of carriers; a transient blueshift of observed phonon frequencies is indicative of the coupling between photogenerated charges and stretching-bending modes of the deformed inorganic sublattice, as confirmed by DFT calculations

    Generation of ultrashort pulses by four wave mixing in a gas-filled hollow core fiber

    Get PDF
    The four wave mixing (FWM) process is widely exploited for the generation of tunable ultrashort light pulses. Usually this process is driven in bulk materials, which are however prone to optical damage at high pump laser intensities. A tunable source of ultrashort 10 mu J level pulses in the visible spectral region is described here. In particular, we report on the implementation of FWM driven by a two-color ultrafast laser pulse inside a gas-filled hollow core fiber (HCF). Due to the high-damage threshold and the long interaction distance, the HCF-based FWM configuration proves to be suitable for high-energy applications. Moreover, this technique can be potentially used for ultrashort pulses generation within a wide range of spectral regions; a discussion on the possibility to extend our scheme to the generation of few-cycle mid-IR pulse is provided

    Fast stabilization of a high-energy ultrafast OPA with adaptive lenses

    Get PDF
    The use of fast closed-loop adaptive optics has improved the performance of optical systems since its first application. Here we demonstrate the amplitude and carrier-envelope phase stabilization of a high energy IR optical parametric amplifier devoted to Attosecond Science exploiting two high speed adaptive optical systems for the correction of static and dynamic instabilities. The exploitation of multi actuator adaptive lenses allowed for a minimal impact on the optical setup

    Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields

    Get PDF
    High harmonic generation (HHG) spectroscopy has opened up a new frontier in ultrafast science, where electronic dynamics can be measured on an attosecond time scale. The strong laser field that triggers the high harmonic response also opens multiple quantum pathways for multielectron dynamics in molecules, resulting in a complex process of multielectron rearrangement during ionization. Using combined experimental and theoretical approaches, we show how multi-dimensional HHG spectroscopy can be used to detect and follow electronic dynamics of core rearrangement on sub-laser cycle time scales. We detect the signatures of laser-driven hole dynamics upon ionization and reconstruct the relative phases and amplitudes for relevant ionization channels in a CO2 molecule on a sub-cycle time scale. Reconstruction of channel-resolved complex ionization amplitudes on attosecond time scales has been a long-standing goal of high harmonic spectroscopy. Our study brings us one step closer to fulfilling this initial promise and developing robust schemes for sub-femtosecond imaging of multielectron rearrangement in complex molecular systems
    • …
    corecore